Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.21.512606

ABSTRACT

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFN2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1- inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN- and IFN-{beta} pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.


Subject(s)
COVID-19 , Inflammation , Severe Acute Respiratory Syndrome
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.21.213777

ABSTRACT

We investigated the immune events following SARS-CoV-2 infection, from the acute inflammatory state up to four weeks post infection, in non-human primates (NHP) with heterogeneous pulmonary pathology. The acute phase was characterized by a robust and rapid migration of monocytes expressing CD16 from the blood and concomitant increase in CD16+ macrophages in the lungs. We identified two subsets of interstitial macrophages (HLA-DR+ CD206-), a transitional CD11c+ CD16+ cell population that was directly associated with IL-6 levels in plasma, and one long lasting CD11b+ CD16+ cell population. Strikingly, levels of monocytes were a correlate of viral replication in bronchial brushes and we discovered TARC (CCL17) as a new potential mediator of myeloid recruitment to the lungs. Worse disease outcomes were associated with high levels of cell infiltration in lungs including CD11b+ CD16hi macrophages and CD11b+ neutrophils. Accumulation of macrophages was long-lasting and detectable even in animals with mild or no signs of disease. Interestingly, animals with anti-inflammatory responses including high IL-10:IL-6 and kynurenine to tryptophan ratios had less signs of disease. Our results unravel cellular mechanisms of COVID-19 and suggest that NHP may be appropriate models to test immune therapies.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.18.157933

ABSTRACT

SARS-CoV-2 induces a wide range of disease severity ranging from asymptomatic infection, to a life-threating illness, particularly in the elderly and persons with comorbid conditions. Up to now, SARS-CoV-2 has infected more than five million and led to more than 300,000 deaths worldwide. Among those persons with serious COVID-19 disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. SARS-CoV-2-induced ARDS is difficult to treat clinically, and new therapeutic strategies are needed. In order to evaluate such therapeutic strategies, animal models of SARS-CoV-2 infection that manifest severe disease are needed. Here we report fatal ARDS in two African green monkeys (AGMs) infected with SARS-CoV-2 that demonstrated pathological lesions and disease similar to severe COVID-19 in humans. Moreover, we report the observation of cytokine release (cytokine storm) in three of four infected AGMs. All four animals showed increased levels of IL-6 in plasma, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2 infection. Our results suggest the AGM is a useful model to study disease pathogenesis of SARS-CoV-2, and for the evaluation of therapeutic interventions designed to combat serious pulmonary disease associated with this infection.


Subject(s)
Monkey Diseases , Lung Diseases , Respiratory Distress Syndrome , Pathological Conditions, Signs and Symptoms , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL